Hi everyone,
I´m recently using LagChain to do some text embeddigns , but the class Neo4jGraph is just returning 50 rows when my graph model have around 14,000 nodes.
Here is some tests
from langchain.graphs import Neo4jGraph
graph = Neo4jGraph(
url=NEO4J_URI,
username=NEO4J_USERNAME,
password=NEO4J_PASSWORD
)
results=graph.query("""
MATCH (c:CONTRATO)
RETURN c.Id_Contrato as idContrato""")
df=pd.DataFrame(results,columns=["idContrato"])
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 1 columns):
Column Non-Null Count Dtype
0 idContrato 50 non-null int64
dtypes: int64(1)
memory usage: 528.0 bytes
Using this is OK:
from graphdatascience import GraphDataScience
gds = GraphDataScience(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))
results=gds.run_cypher("""MATCH (c:CONTRATO) RETURN c.Id_Contrato as idContrato """)
df2=pd.DataFrame(results,columns=["idContrato"])
df2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14494 entries, 0 to 14493
Data columns (total 1 columns):
Column Non-Null Count Dtype
0 idContrato 14494 non-null int64
dtypes: int64(1)
memory usage: 113.4 KB
There´s someone in the team of Neo4j participate with LangChain to help me?
Thanks in advanced